

Volume 2, Issue 1, (Jan-Jun) 2025

Driver Drowsiness Detection System Using Machine Learning

Himanshi Dwivedil

Student, Dept. of CSE

Indore Institute of Science and Technology

Indore, India

Richa Gupta
Student, Dept. of CSE
Indore Institute of Science and Technology
Indore, India
richa17674@gmail.com

Abstract—Driver drowsiness is a significant factor in road accidents, leading to substantial fatalities and injuries. Various systems have been developed to monitor driver alertness to mitigate this risk. This paper explores a driver drowsiness and yawning detection system using the dlib library, which provides machine learning algorithms and tools for facial recognition and landmark detection. The proposed system leverages Dlib's capabilities to monitor eye and mouth movements, thereby detecting early signs of drowsiness and yawning. A key aspect of the system is the use of the Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR) to measure eye closure duration and yawning detection, a critical indicator of drowsiness. This method does not require any special hardware installations, making it highly accessible and easy to implement using standard cameras. This paper details the design, implementation, and testing of the system, highlighting its effectiveness and potential for real-world application. By identifying early signs of driver fatigue, the system

Index Terms—Dlib, EAR - (Eye Aspect Ratio), MAR- (Mouth Aspect Ration

I. INTRODUCTION

The advancement of technology has brought forth numerous solutions aimed at improving road safety. One significant area of focus is the detection and prevention of driver drowsiness, a major cause of road accidents. The National Highway Traffic Safety Administration (NHTSA) reports that approximately 100,000 crashes annually are related to drowsy driving, though the actual number is likely much higher. This highlights the urgent need for effective systems to detect and alert drivers about their drowsiness levels.

Facial expressions can provide valuable insights into a person's physiological state. For detecting driver drowsiness, facial recognition and tracking technology offer a non-intrusive and efficient approach. Numerous algorithms and techniques exist for face detection, which is the initial step in developing a drowsiness detection system. Drowsiness is often indicated by specific facial movements, such as prolonged eye closure and yawning.

To tackle this issue, real-time monitoring of the driver's eyes and facial features can be implemented using a camera mounted on the dashboard of the car. This paper proposes a system utilizing the dlib library, known for its robust facial landmark detection capabilities, to identify signs of drowsiness and yawning. The dlib model can detect 68 facial landmarks, from which features related to drowsiness are extracted. The system then alerts the driver if drowsiness is detected, thereby reducing the risk of accidents.

A. Related Work

A substantial amount of research has been conducted to develop systems that enhance driving safety by monitoring driver alertness. These systems typically fall into three categories: physiological, behavioral, and vehicle-based methods.

B. Physiological Methods

Physiological methods involve monitoring biological signals such as heart rate, brain activity (EEG), and skin conductance. For instance, Vicente

Volume 2, Issue 1, (Jan-Jun) 2025

et al. (2016) proposed a system using EEG to monitor brain activity for drowsiness detection. Although highly accurate, these methods are often intrusive and uncomfortable, requiring sensors to be attached to the driver's body.

C. Behavioral Methods

Behavioral methods focus on identifying signs of drowsiness through facial expressions and eye movements. Abtahi et al. (2014) developed a system that detects yawning by analyzing mouth movements using a video camera. Similarly, Bergasa et al. (2006) presented a real-time system for monitoring driver vigilance by analyzing eye closure and head movements. These methods are non-intrusive and rely on computer vision techniques, making them more user-friendly.

Vural et al. (2007) implemented a system that detects drowsiness by analyzing eye blink patterns and head movements. The system used infrared cameras to enhance detection accuracy in low-light conditions. Similarly, Soukupova and Cech (2016) developed an eye blink detection system based on facial landmarks, which proved effective in detecting fatigue-related eye closures.

D. Vehicle-Based Methods

Vehicle-based methods analyze driving patterns such as steering wheel movements, lane deviation, and speed variations. Li et al. (2016) studied the correlation between steering behavior and driver drowsiness, proposing a system that monitors steering patterns to detect fatigue. However, these methods can be affected by road conditions and driving style, leading to potential inaccuracies.

E. Hybrid Methods

Hybrid methods combine physiological, behavioral, and vehicle-based approaches to improve detection accuracy. Zhang et al. (2020) proposed a hybrid system that integrates EEG signals with eyetracking data to enhance drowsiness detection. This method leverages the strengths of both physiological and behavioral indicators, providing a more comprehensive assessment of driver fatigue.

F. Motivation and Approach

Given the limitations and challenges associated with existing methods, our research aims to develop a non-intrusive, real-time drowsiness detection system using the dlib library. The dlib library offers powerful tools for facial recognition and landmark detection, which are critical for identifying drowsiness indicators such as prolonged eye closure and vawning.

The proposed system involves mounting a camera on the dashboard to capture the driver's facial features. The dlib model is trained to identify 68 facial landmarks, from which the Eye Aspect Ratio (EAR) is calculated to measure eye closure duration. EAR is a crucial indicator of drowsiness, providing a reliable metric for detecting when a driver is becoming fatigued.

G. Key Contributions

- Non-Intrusive Detection: The system uses a standard camera to monitor the driver's face, eliminating the need for special hardware installations or invasive sensors.
- Real-Time Processing: The system processes video frames in real-time, providing timely alerts to the driver upon detecting signs of drowsiness or yawning.
- Robustness and Accuracy: Leveraging dlib's advanced facial landmark detection, the system maintains high accuracy and robustness across different lighting conditions and facial orientations

By integrating advanced computer vision techniques and leveraging the strengths of existing research, this paper presents a practical and efficient solution to the critical issue of driver drowsiness. This system aims to enhance road safety by providing early warnings to drivers, thereby reducing the risk of drowsy driving accidents.

II. LITERATURE REVIEW

Several approaches have been explored for detecting driver drowsiness, including physiological, behavioral, and vehicle-based methods. Physiological methods, such as monitoring heart rate and brain

Volume 2, Issue 1, (Jan-Jun) 2025

activity, are highly accurate but intrusive. Vehiclebased methods, like monitoring steering patterns, are less intrusive but can be affected by road conditions

Behavioral methods, which include monitoring eye movements and facial expressions, offer a balance between accuracy and non-intrusiveness. Advances in computer vision and machine learning have enabled the development of sophisticated systems that can accurately detect drowsiness through facial analysis. The dlib library, known for its robust facial landmark detection capabilities, is a suitable tool for implementing such a system.

Background on Driver drowsiness detection system

Driver drowsiness is a significant cause of road accidents, with the National Highway Traffic Safety Administration (NHTSA) reporting around 100,000 crashes annually due to drowsy driving. Previous approaches to detecting drowsiness have included vehicle-based measures, physiological monitoring, and behavioral observation. Vehicle-based measures monitor patterns like lane deviation, while physiological methods use sensors to track indicators such as EEG and heart rate, though they are often intrusive. Behavioral measures, which focus on observable signs like eye closure and yawning, are more practical for real-world applications. Advances in computer vision and

machine learning have enabled the development of non- intrusive, real-time detection systems. Facial landmark

detection tools like Dlib's 68-point model and metrics such as the Eye Aspect Ratio (EAR) provide accurate measures of eye openness. Machine learning algorithms further enhance detection by identifying patterns indicative of drowsiness. This project aims to develop a cost-effective, non-intrusive system using a standard camera to monitor drivers' faces, calculate EAR, and detect yawning, thus providing timely alerts and improving road safety. Key challenges include ensuring performance under varying lighting conditions and processing data in real-time.

A. Motivation

The project's primary goals are:

- Improving Road Safety: Providing timely alerts to drowsy drivers to reduce accident risks.
- Non-Intrusive Monitoring: Using a standard camera for facial monitoring ensures driver comfort.
- Cost-Effectiveness: Utilizing readily available hardware makes the system affordable and easy to implement.

B. Literature Review Conclusion

The literature review highlights significant advancements in driver drowsiness detection, showcasing various methods ranging from vehicle-based and physiological measures to behavioral observations. While vehicle and physiological methods offer accuracy, they come with challenges such as extensive calibration and intrusiveness. Behavioral measures, enhanced by recent advancements in computer vision and machine learning, provide a practical and non-intrusive solution. Technologies like Dlib's 68 facial landmark model and metrics such as the Eye Aspect Ratio (EAR) have proven effective in real-time applications. This project builds on these foundations, aiming to develop a robust, cost-effective system to detect and alert drivers about drowsiness, thereby enhancing road safety.

III. TECHNOLOGY USED

The development of a driver drowsiness and yawning detection system involves various technologies and tools. This section outlines the primary technologies used in this research.

A. Dlib Library

Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real-world problems. It is widely used for various purposes, including:

- Facial Landmark Detection: Dlib provides a pre-trained model capable of detecting 68 facial landmarks. These landmarks include key points around the eyes, nose, mouth, and jawline, which are crucial for analyzing facial features and detecting drowsiness.
- Machine Learning: Dlib contains various machine learning algorithms that are useful for

Volume 2, Issue 1, (Jan-Jun) 2025

training models and making predictions based on input data.

B. OpenCV

OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine learning software library. It includes several hundred computer vision algorithms. In this project, OpenCV is used for:

- Image and Video Processing: OpenCV handles reading video frames from the camera, converting them to the appropriate format, and preprocessing them for further analysis.
- Face Detection: OpenCV's built-in face detection algorithms, including Haar Cascade classifiers, are used to locate the driver's face in each frame before applying the dlib landmark detection.

C. Python

Python is the primary programming language used in this project due to its simplicity and the extensive availability of libraries and frameworks for machine learning and computer vision. Key aspects include:

- **Integration with Libraries:** Python seamlessly integrates with dlib and OpenCV, allowing for efficient development and implementation of the detection system.
- Data Handling: Python's rich ecosystem includes libraries like NumPy and Pandas, which facilitate efficient data manipulation and analysis.

D. NumPy

NumPy is a fundamental package for scientific computing with Python. It supports large, multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays. NumPy is used in this project for:

- Numerical Operations: Efficient computation of the Eye Aspect Ratio (EAR) and other metrics derived from the facial landmarks.
- Data Handling: Managing and manipulating data arrays extracted from video frames for analysis.

E. Hardware Requirements

The hardware setup for this system is minimal and includes:

- Standard Camera: A basic webcam or camera module mounted on the dashboard to capture the driver's facial features. No special infrared or night-vision cameras are required, making the system cost-effective and easy to implement.
- Computing Device: A computer or embedded system (such as a Raspberry Pi) capable of running the detection algorithms in real-time.

F. Haar Cascade Classifiers

Haar Cascade classifiers are a popular method for object detection in real-time applications. OpenCV provides pre-trained Haar Cascade classifiers for face and eye detection. In this project, Haar Cascades are used for:

 Face and Eye Detection: Quickly identifying the face and eye regions in video frames before applying more precise landmark detection with dlib.

G. IDE: Jupyter Notebook

Jupyter Notebook is primarily considered a data science tool, but it can also be effectively used as an integrated development environment (IDE) for various programming tasks. Its user-friendly interface, combining code editing, interactive execution, and visualization, caters to both novice and seasoned programmers. It offers a unique combination of code editing, interactive execution, and rich text markup, making it a versatile tool for data science, prototyping, and learning.

H. Dataset and Facial Landmark Model

The efficacy of the driver drowsiness and yawning detection system heavily relies on the accuracy of facial landmark detection. This section elaborates on the dataset and the 68 facial landmark model used in this research.

Volume 2, Issue 1, (Jan-Jun) 2025

- 1) Dlib's 68 Facial Landmark Model: Dlib's 68 facial landmark model is a robust tool for facial feature detection. It is trained on a comprehensive dataset annotated with key points on the human face. These landmarks include critical regions such as the eyes, eyebrows, nose, mouth, and jawline. The model is pre-trained and available as a part of the dlib library, specifically in the shape_predictor_68_face_landmarks.dat file.
- 2) 68 Landmarks Description: The 68 facial landmarks can be grouped into different regions:
 - Jawline: Points 1 to 17 outline the jaw.
 - Eyebrows: Points 18 to 27 include the eyebrows.
 - Nose: Points 28 to 36 cover the nose.
 - Eyes: Points 37 to 48 outline the eyes.
 - Mouth: Points 49 to 68 outline the mouth.

These landmarks are used to calculate metrics such as the Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR), which are crucial for detecting drowsiness and yawning.

IV. METHODOLOGY

The methodology for developing the driver drowsiness and yawning detection system involves a comprehensive approach that integrates data acquisition, face detection, facial landmark detection, feature extraction, drowsiness and yawning detection algorithms, and an alert mechanism. Each stage is crucial for ensuring the system's accuracy, reliability, and real-time performance.

A. Data Acquisition

Data acquisition forms the foundation of the system, involving the continuous capture of video frames from a camera mounted on the vehicle's dashboard. The camera setup is configured to capture high-quality images of the driver's face under varying lighting conditions and driving environments. This continuous video stream provides the input data necessary for subsequent stages of the detection system.

B. Face Detection

The first processing step after acquiring video frames is face detection. Two primary methods are utilized:

- Haar Cascade Classifiers: These are employed for their efficiency in detecting objects in images based on Haar-like features. Trained specifically for facial detection, Haar Cascade classifiers are robust to lighting variations and facial orientations, making them suitable for real-time applications.
- Histogram of Oriented Gradients (HOG) and Support Vector Machines (SVM): Dlib's implementation of HOG combined with SVM excels in detecting faces by evaluating gradients and orientations. This method handles varying facial poses and complex backgrounds effectively.

C. Facial Landmark Detection

Once a face is detected within a video frame, the system proceeds to detect and localize key facial landmarks. This step is essential for assessing facial expressions and movements.

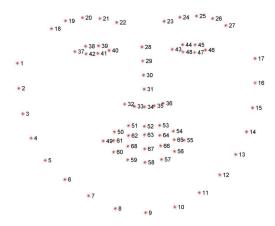


Fig. 1: Facial Landmarks Diagram

Dlib's 68-Point Facial Landmark Model:
 This pre-trained model detects 68 specific points on the face, including eyes, eyebrows, nose, mouth, and jawline. Trained on a large annotated dataset, it ensures high accuracy in feature localization.

Volume 2, Issue 1, (Jan-Jun) 2025

D. Feature Extraction

This stage derives meaningful metrics from facial landmarks to quantify drowsiness and yawning.

• Eye Aspect Ratio (EAR): EAR quantifies the extent of eye closure using specific eye landmarks. It is calculated as:

$$EAR = \frac{||p_2 - p_6|| + ||p_3 - p_5||}{2 \cdot ||p_1 - p_4||}$$
 (1)

where p_1 to p_6 are landmarks around the eye.

• Mouth Aspect Ratio (MAR): MAR measures mouth openness, calculated using:

$$MAR = \frac{||p_2 - p_8|| + ||p_3 - p_7|| + ||p_4 - p_6||}{2 \cdot ||p_1 - p_5||}$$
(2)

where p_1 to p_8 represent specific points around the mouth.

- E. Drowsiness and Yawning Detection Algorithms
 Using EAR and MAR values:
 - **Drowsiness Detection:** The EAR is monitored continuously. If it drops below a predefined threshold for a sustained period, it indicates eye closure, a sign of drowsiness.
 - Yawning Detection: A significant increase in MAR indicates yawning. This behavior triggers an alert.


F. Alert Mechanism

Upon detection of drowsiness or yawning, the system activates alerts to notify the driver:

- Real-Time Alerts: Delivered via audible alarms, visual icons, or haptic feedback (e.g., steering wheel vibrations) to immediately gain the driver's attention.
- Implementation and Integration:
 - Hardware Setup: Includes mounting and configuring a dashboard camera.
 - Software Development: Algorithms are implemented using Python with OpenCV and Dlib libraries.
 - Integration with Vehicle Systems: Ensures seamless monitoring and alerting without distracting the driver.

G. System Workflow and Validation

The system operates in a continuous loop: video frames are captured, faces detected, landmarks identified, features extracted, and drowsiness/yawning recognized in real time. Validation involves testing under various lighting conditions, driving environments, and driver demographics to ensure robustness and reliability.

Open eye will have more EAR

Closed eye will have less EAR

Fig. 2: Different EAR ratios

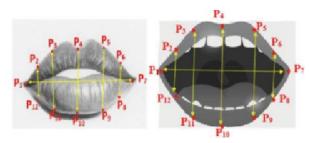


Fig. 3: Different MAR ratios

Volume 2, Issue 1, (Jan-Jun) 2025

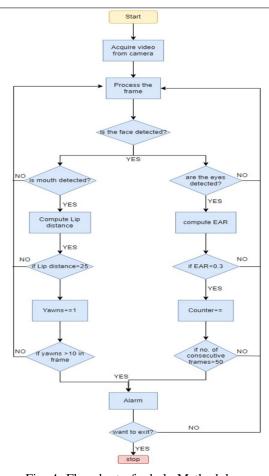


Fig. 4: Flowchart of whole Methodology

CONCLUSION

In conclusion, the development of a driver drowsiness and yawning detection system using advanced computer vision techniques represents a significant advancement in enhancing road safety and preventing accidents caused by driver fatigue. By leveraging methodologies such as face detection, facial landmark detection, and feature extraction (including Eye Aspect Ratio and Mouth Aspect Ratio), the system effectively monitors the driver's physiological cues in real-time. Through continuous analysis of video streams captured by onboard cameras, potential instances of drowsiness and yawning are promptly identified, triggering timely alerts to mitigate risks.

The integration of robust algorithms for drowsiness and yawning detection, coupled with a responsive alert mechanism, ensures that drivers receive immediate notifications when signs of fatigue are detected. This proactive approach not only improves driver awareness but also encourages timely corrective actions, thereby reducing the likelihood of accidents on the road.

Furthermore, the validation of the system's performance under various driving conditions and lighting environments underscores its reliability and applicability in real-world scenarios. The successful implementation of this system promises to contribute significantly to road safety initiatives by promoting vigilant driving habits and minimizing the consequences of driver drowsiness.

As future work, enhancements could focus on refining the algorithms for even greater accuracy and exploring additional features for comprehensive driver monitoring. Continued research and development in this field hold the potential to further advance automotive safety systems and ultimately save lives on the road.

REFERENCES

- Z. Zhang and Z. Zhang, "A review of driver drowsiness detection systems: Techniques, advantages, and limitations," *IEEE Access*, 2020.
- [2] D. E. King, "Dlib-ml: A machine learning toolkit," *Journal of Machine Learning Research*, vol. 10, pp. 1755–1758, 2009.
- [3] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2001, pp. 511– 518.
- [4] X. Li et al., "Eye-tracking detection of driver fatigue based on electrooculography," *IEEE Trans. Intell. Transp. Syst.*, vol. 17, no. 4, pp. 1231–1241, 2016.
- [5] S. Kusuma and N. Kumar, "Driver drowsiness detection based on eye closure and yawning detection," *Int. J. Innov. Technol. Explor. Eng.*, vol. 8, no. 9, pp. 824–828, 2019.
- [6] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, "Real-time system for monitoring driver vigilance," *IEEE Trans. Intell. Transp. Syst.*, vol. 7, no. 1, pp. 63–77, 2006.
- [7] T. Soukupova and J. Cech, "Real-time eye blink detection using facial landmarks," in *Proc. 21st Computer Vision Winter Workshop (CVWW)*, 2016.